BICAPEUTICS

A STRUCTURE-BASED APPROACH TO DRUGGING RNA WITH SMALL MOLECULES

Cell Symposium: Chemical Biology in Drugging the Undrugged

JENNIFER PETTER | 4 DECEMBER 2024

RNA is upstream of all biology

- Our goal is to unlock this previously inaccessible therapeutic target space by developing drug-like small molecule ligands for RNA (rSMs).
- This requires building a toolkit for RNA drug discovery.

Comprehensive platform for target identification, rSM lead discovery, and optimization

Target ID and structure prediction

2

Structure confirmation and rSM ID

3

rSM characterization and optimization

©ARRAKIS THERAPEUTICS 2024 | 3

The folding of mRNA structures can be recapitulated in vitro

Translation sub-target fold in context of entire mRNA, from HepG2 cells *In vitro* screening construct folding is similar to in-cell structure

SEC-MS identifies druglike, structurally diverse, selective rSMs

a. 84% of screens yield confirmed hits Most confirmed hits are predicted to be drug-like

Confirmed hits occupy a sub-space spanned by drugs

88% of confirmed hits bind to fewer than 3 ASTs

Multiple therapeutic rSM modalities

MYC, a holy grail oncology target

Orally available RNAi mimic that selectively inhibits MYC

Inhibition of MYC translation with small molecules with potential to penetrate tumors

ARK-84291 shows selective binding to long MYC isoforms

SEC-MS binding data

- ARK-84291 identified by SEC-MS screening of internal drug-like library
- ARK-84291 binds (K_D(app) ~ 1.2 µM) RG4-containing 'long' constructs
- ARK-84291 does not bind to the 'short' constructs with no RG4
- Binding confirmed via SPR, DSF, and NMR

AST	K _D (app) μM	MYC isoform	
266 1.2		Long	
380	1.3	Long	
382	1.2	Long	
381 > 12		Short	
383	> 12	Short	

ARK-84291 selectively inhibits MYC expression in cell lines that rely on the upstream promoter

ARK-84291 only affects MYC protein levels in Daudi cancer cells expressing long-form MYC

ARK-175876 PO BID dosing

Oral Formulation: 0.5 % HPMC and 0.2% tween 80 (suspension)

Adverse events: No adverse events

30 mpk used Batch 001

100 mpk used Batch 002

ARK-0175876

LogD, TPSA	3.2, 98.6
Kinetic Sol (µM): PBS Buffer	67
PAMPA, P _{app} (cm/s)	7.9 x 10 ⁻⁶
MDCKII-MDR1 $P_{app (A-B)}$ (10 ⁻⁶ cm/s) / ER	5.0 / 7
MLM CL _{int} (uL/min/mg)	73
HLM CL _{int} (uL/min/mg)	164
PPB % Unbound (Mouse / Human)	2/3.3
MYC Hibit (IC ₅₀) (µM) / IC ₉₀ (uM)	0.083 / 0.693

PK parameters	30 mg/kg PO BID HPMC	100 mg/kg PO BID HPMC	
T _{1/2} (h)	N/A	N/A	
T _{max} (h)	0.33	0.33	
C _{max} (ng/mL)	1887 (3.6 μM)	1807 (3.4 uM)	
AUC _{last} (h*ng/mL)	9282	14776	
AUC _{Inf} (h*ng/mL)	N/A	N/A	
F (%)	N/A	N/A	
Cl_obs (mL/min/kg)	27	27	
V _{ss} _obs (L/kg)	0.94	0.94	

MYC knockdown by ARK-175876 in xenografts

- ARK-175876 was administered to mice in a Daudi xenograft model at 100 mg/Kg PO BID
- MYC protein expression showed up to 50% MYC reduction in xenograft cells
- Knockdown was measured out to 12 hours post-2nd dose

Myotonic dystrophy type 1 (DM1) is a repeat expansion disease for which the RNA is pathogenic

DM1 is a multi-system disease

- Effects ~1:8000 WW
- Symptoms include myotonia, muscle wasting, cataracts, and cardiac conduction abnormalities

Caused by a pathogenic mRNA expansion repeat

 \sum

rSMs can bind and

liberate bound MBNL1

- Mis-splicing of >100 target genes
- Current therapeutics are unlikely to address the full disease manifestations beyond muscle

 Arrakis has identified multiple ligands in two distinct chemical series that bind CUG pathologic RNA and displace key RNA splicing factors

DM1 program assays

rSMs displace MBNL1 protein from CUG repeat in a concentrationdependent manner

rSMs in two chemical series show correlation between RNA binding and MBNL1 displacement over three logs of potency

Lead compound exhibits selectivity for CUG over other RNA repeats and CTG (DNA)

RNA Class	Measurement	ARK-174809	ARK-177103	ARK-177535
CCG RNA	K _{D, CUG RNA} (nM)	4,910	507	51
CCG RNA	K _{D, CCG RNA} (nM)	>10,000	13,000	>2,000
CCG RNA	$K_{D, CCG RNA}/K_{D, CUG RNA}$	2	25.6	39.2
AUUCU (AST-838)	K _{D, CUG RNA} (nM)	4,910	507	51
AUUCU (AST-838)	K _{D, AUUCU RNA} (nM)	>10,000	>20,000	no binding
AUUCU (AST-838)	K _{D, AUUCU RNA} /K _{D, CUG RNA}	2	39.4	na
GGCCUG (AST-839)	K _{D, CUG RNA} (nM)	4,910	507	51
GGCCUG (AST-839)	K _{D, GGCCUG RNA} (nM)	>10,000	>20,000	no binding
GGCCUG (AST-839)	K _{D, GGCCUG RNA} /K _{D, CUG RNA}	2	39.4	na
AST-452, SL	K _{D, CUG RNA} (nM)	4,910	507	51
AST-452, SL	K _{D, AST-452 SL RNA} (nM)	>9,290	4,110	778
AST-452, SL	$K_{D, AST-452 SL}/K_{D, CUG RNA}$	>1.9	8.1	15.3
AST-535, 3WJ	K _{D, CUG RNA} (nM)	4,910	507	51
AST-535, 3WJ	K _{D, AST-535 3WJ RNA} (nM)	7,250	5,550	1,180
AST-535, 3WJ	K _{D, AST-535 3WJ} /K _{D, CUG RNA}	1.5	10.9	23.1
RNA vs DNA	K _{D, CUG RNA} (nM)	4,910	507	51
RNA vs DNA	K _{D, CTG DNA} (nM)	1,580	2,200	795
RNA vs DNA	K _{D, CTG DNA} /K _{D, CUG RNA}	0.3	4.4	15.6

X-ray structure (2.8 Å) of rSM bound to CUG RNA repeat

Structure reveals key molecular interactions, informs SAR

- ARK-177535 stacks with a U•U mismatch pair, a recurring feature of CUG repeat RNA structures
- The sidechains form H-bonds with phosphate backbone and 2'OH, contributing to affinity and specificity

Model for displacement mechanism

- The structure of MBNL complexed with RNA has been solved (both X-ray and NMR)
- Conformation of ligand-bound RNA is quite distinct from the conformation of MBNL-bound RNA
- In light of this, a direct, associative displacement mechanism is unlikely
- Dissociative displacement allows low-energy rearrangement of unbound RNA

rSM impacts the formation of pathogenic foci in DM1 patient-derived muscle cells

DM1 affected myoblasts were differentiated for 4 days and treated with either DMSO or ARK-0177103 for 24h

Multiple rSMs correct splicing defects in patient-derived myocytes

Clinically relevant splicing recovery at 24 hr in differentiated myocytes

	ARK-178164	ARK-177535
MBNL1 displacement (µM)	0.015	0.019
Splicing in cells (µM)	0.3	0.3
MDCK (Papp x10 ⁻⁶ , cm/s)	0.24	0.09

100

ARK-177535: High potency, low exposure

ARK177535-002 Mouse PK

PK parameters	6 mg/kg QD IP	20 mg/kg QD IP	
T _{1/2} (h)	12.6	12.8	
$T_{max}(h)$	0.250	0.250	
C _{max} (ng/mL)	455	1677	
AUC _{last} (h*ng/mL)	588	2150	
AUC _{Inf} (h*ng/mL)	649	2487	
F (%)	51.7	56.4	

PK	0.3 mg/kg
parameters	QD IV
Cl_obs (mL/min/kg)	89
V _{ss} _obs (L/kg)	34.2

Dose (mpk)	RoA	Gastroc ng/g	Gastroc µM	Quad ng/g	Quad µM	Brain ng/g	Brain µM	Heart ng/g	Heart μM
6	IP	620	0.97	774	1.21	27.1	0.042	2236	3.48
20	IP	1648	2.57	2272	3.54	71.4	0.11	5032	7.84

ARK-177593: Low potency, high exposure, oral bioavailability

ARK177593 Mouse PK

Hours

Dose	RoA	Quad ng/g	Quad µM	Heart ng/g	Heart µM
0.3	IV	34.5	0.08	92.2	0.21
20	IP	571	1.30	Not collected	Not collected
30	PO	690	1.57	Not collected	Not collected
100	PO	3814	8.67	6040	13.73
300	PO	15140	34.41	35900	81.59

HSA^{LR} mouse model of myotonic dystrophy

- HSA^{LR} transgenic mice express a human skeletal actin gene (HSA) containing a CTG repeat expansion of approximately 250 repeats⁽¹⁾
- This model shows two hallmarks of the human disease: Splicing defects and myotonia in skeletal muscle

Pharmacodynamics: normalization (recovery) of splicing patterns in panel of clinically relevant genes

1. A. Mankodi et al, Myotonic Dystrophy in Transgenic Mice Expressing an Expanded CUG Repeat. Science **289**, 1769–1772 (2000)

CONFIDENTIAL

ARK-177535 administered IP modulates multiple relevant splicing events in HSA^{LR} mice

- ARK-177535 is **98.8%** bound in gastroc homogenates, suggesting only ~0.24 μM of free fraction
- Minimal concentration for ARK-177535 to show splicing rescue in human DM1 cells is 0.3 μM
- ASO was injected directly into the gastrocnemius muscle and ARK-177535 administered QD for 5 days IP
- Tissues were analyzed for correction in splicing defects by RNA amplicon seq analysis.

Exposure and PD in muscle tissue via IP administration

ASO was injected directly into the gastrocnemius muscle and ARK-177535 administered QD for 5 days IP. Tissues were analyzed for correction in splicing defects by RNA amplicon seq analysis.

ARK-178164 and ARK-177535 reverse myotonia in HSA^{LR} mice

Muscle Relaxation T80

- Compounds were dosed IP daily for 5 days; ASO control injected once IM in gastrocnemius
- Effect on myotonia was measured 4 hrs after last injection by measuring the time to reach 80% of muscle plantarflexion relaxation (stimulation-induced pressing by the mouse's foot against a machine that measures torque)

####p<0.001, vs. FVB vehicle, unpaired t-test of Logtransformed data; *p<0.05, ****p<0.0001 vs HSAIr Vehicle, One-Way ANOVA, Dunnett's post-hoc

Acknowledgments

RNA and Discovery Biology

Craig Blain Alex Seletsky Lu Han Timothy Demers Stephen Doris Nabanita De Jose Saavedra Haina Huang Pooja Joshi Alec Sexton Helene Chamberlin Emily Schutsky Andrew Walker Lexi Gehring I ane Anderson Linda Honaker Hayden Casassa Becky Lock Ewa Stypulkowski Sarah Mahoney Wan Yee Leong Namuun Erdenepurev Madaline Gilbert Alyssa Kelly Amit Shahar Hunter Linton Ava Devaney

Molecular Pharmacology

Nick Marsh Francoise Powell Ian Wilson Raphael Bruckner Carla Neckles Scott Rusin Dhruv Bajaj Scott Gorman Tony Montibello Virginia Tsai Joel Dufour Gary Frey

Chemical Sciences

Lee Roberts Elena Menichelli Karthik Iyer Herschel Mukherjee Robin Prince Yaqiang Wang Elias Ndaru Emily Garcia Sega Charles Perry

Data Sciences

Dave Mauger Luis Soares Kimberly Robasky John Cooper Lee Vandivier Carrie Kovalak Alex Amlie-Wolf Michael Rutenberg Schoenberg Rishab Narula Jeel Kordiya Anna Mathias Jenni Nguyen Neil Lajkiewicz Lindsay Chatkewitz Colin Mizia Bill Coldren Anton Filikov Wilnelly Martinez Ortiz Sundar Jubilant

Executive Team

Mike Gilman Jennifer Petter Kathleen McGinness Domi Stickens Heather Lounsbury James Mutamba